Skip to main content
Skip to main content

Evaluating the Impacts of a High Fat, Low Fiber Diet on the Composition and Biodiversity of Gut Microbiota in Wild Olive Baboons

Life Sciences

Abstract

With concerns about how to feed an exponentially growing, increasingly obese population, humanity’s relationship with food is a pressing concern. Evaluating the evolutionary changes in the composition of gut microbiota (GM), defined as the microorganisms that live in the digestive tract, may offer insight into how human bodies have adapted to these changing metabolic and energetic needs. Host diet has proven to influence the composition and function of the GM, which subsequently affects human nutrition and health via interactions with metabolism, the immune system, and brain. Due to the lack of ancient human soft tissue, nonhuman primates (NHPs) can be used to understand the GM’s presumed role in initiating changes in human metabolic pathways over time, particularly in response to a shift from a low fat high fiber diet (LFHF) to a high fat low fiber diet (HFLF). My project investigated if the primate GM changes in response to an industrialized, HFLF diet by focusing on the fecal samples of 2 different populations of wild baboons in Rwanda’s Alkagera National Park, one that eats a LFHF diet and the other that eats a HFLF diet. By conducting 16s rRNA bacterial gene sequencing, preliminary data indicates that diet strongly impacts GM composition, and that baboons consuming a HFLF diet have reduced microbial diversity. Because current literature focuses on clinical scenarios, or has captivity as a confounding variable, this work contributes to limited data on host-microbe relationships in wild NHPs that can inform how a long-term HFLF diet impacts human physiology.

Madelyn Moy
Weinberg College of Arts and Sciences
Completed in 2020
Advisor: Katherine Amato
Major: Anthropology, Biology, Integrated Science
DOI: 10.21985/n2-fk08-nt45
Download